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CEA research at Cornell

* Energy modeling * Control systems
e Lighting e Lighting
* HVAC * Shade
e Carbon footprint « HVAC
* Cost « CO,

Cornell CEA Team
* Plant experiments Plant Science Engineering

* LED vs HPS Neil Mattson (director)
 CO, /DLl David de Villiers Kale Harbick
Jonathan Allred Tim Shelford

* Deep pond hydroponics

: : N , Erica Hernandez Lou Albright (emeritus)
Spinach disease mitigation (Pythium)

Bob Langhans (emeritus)



Building energy modeling

* Decades of research
Typical Meteorological Year (TMY3) Stations

* ASHRAE
* USDoE
* NREL

e Simulate building energy consumption
* Calculate loads and system response

e TMY3 data sets for weather
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«  Can be used for existing buildings or proposed designs ‘f" NGRDE s
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* Model interactions (e.g. lighting and cooling) " - . B

* Simulate performance and estimate cost of upgrades 7 e b

* Compare control systems r




Energy balance in CEA buildings

* Internal loads * External loads
* Lights * Solar
* Evapotranspiration * Conduction
* Latent cooling load e Infiltration
* Sensible heating load * Ventilation
* In plant factories/vertical farms, * In greenhouses, external loads often
internal loads dominate dominate

Loads and set point errors determine HVAC system response
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Greenhouse lettuce (Butterhead)

PAR DLI target: 17 mol/m?/day

e Tipburn over 17

* Needs extra air circulation

70 — 85% of light is natural (i.e. free)

Evaporative cooling
> 20,000 head/day/ha (5 oz / 140 g)




CEA Greenhouse (lettuce)

Ithaca
70% light from sun
30% lightsteom lag
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Importance of light control

Day of year

Typical outdoor light per day (Ithaca, NY)



LASSI control

“Light and shade system implementation”
* Lou Albright et al

Predicts natural light accumulation based on first few hours after sunrise
* Prediction based on set of heuristics that are tunable for different climates
* Lights on if predicted sunlight is insufficient

* Deploys shades if predicted sunlight is too much

Schedules artificial light in off-peak hours as much as possible




LASSI control
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Day of year

Day of year

Typical outdoor light per day (Ithaca, NY) Inside greenhouse with LASSI




Savings: LASSI vs threshold

Elmira, NY Minn., MN Phoenix, AZ

Lighting Electricity

Energy costs

* Assumes $0.056/kWh off-peak (10pm — 7am), $0.088/kWh on-peak, $34/MWh gas



LASSI CO, Control

e Virtual light integral

In(2.66E4) — In(400)
actual1h(2.66E4) — In(CO,)

PARyirtual = PAR

* Model uptake and loss through ventilation/infiltration
* At each control step, determine lowest cost combination of light/CO2
* Predict ventilation based on outdoor temperature

* Recent improvement (~¥10% more savings):

* Also supplement CO2 when conditions met:
Low light month

* DLlis behind target for current hour

e Sunis out




Savings: CO, vs basic LASSI

Elmira, NY Minneapolis, MN

Lighting Electricity 58% 64%

Energy + CO, costs 10% (19%) 8% (19%)

S40-50K/ha/y (5130-140K/ha/y)*

() indicates savings over threshold control

* Assumes $0.056/kWh off-peak (10pm — 7am), $0.088/kWh on-peak,
$34/MWh gas, $0.25/kg CO,




Plant factory

* Warehouse
* 100% supplemental light

* Multiple layers possible

* But just one layer in results presented
here

e Mechanical cooling system




Sensible applications

* Research

* Space

e South pole

* Heating costs >>> elec. cost

e But vegetable plant factories in
contiguous U.S. don’t fall in these
categories!



Humidity implications

* Heat entering a space represents a
“cooling load”

* Lights add sensible heat * Heat leaving a space represents a

_ “heating load”
e ET removes sensible heat &

 Impossible to remove moisture
e ET adds latent heat P

using a cooling coil without also
reducing temperature (sensible
cooling)



Case 1: sensible > latent

, _ e Canresult in a plant factory if:
* Common coil capacity
e Suboptimal plant spacing
e 75% sensible cooling
* Suboptimal light efficacy
* 25% latent cooling
* Poor airflow

e Light power > 2x ET power



Case 2: sensible < latent

e Canresultin a plant factory if:

e Coils remove the excess moisture .

Optimal plant spacing
High light efficacy

Good airflow

* But overcooling results! e Light power < 2x ET power

* Reheat: heat must be added back somehow « Example:

1.7 umol/) @ 17 mol/m?/d -> 117 W/m?
ET =67 W/m?

net sensible heat: 50 W/m?

net latent heat: 67 W/m?2




Previous work *

* 3to 12x lighting energy used in plant factory vs greenhouse, depending on
location

e With HVAC energy also included:
* 1.5to 5x total energy used in plant factory vs greenhouse (contiguous U.S.)
* Location
* HVAC system details (i.e. heat exchanger, reheat system, economizer)
*  ET model
* Moving away from equator favors plant factory

e Crossover somewhere in Alaska/Canada

* Harbick et al (LightSym 2016)




Savings: with CO, vs without

Minneapolis, MN

Lighting Electricity 53%

Energy + CO, costs 26%

$283K/ha/y *

* Assumes $0.056/kWh off-peak (10pm — 7am), $0.088/kWh on-peak,
$34/MWh gas, $0.25/kg CO,




Conclusions

Greenhouses consume much less energy for equivalent yield in most climates

* (O, supplementation helps both environments
Any technology improvements (e.g. lighting efficacy) will help both building types
CO, savings potential is sensitive to:

* Cost of electricity

e Cost of CO,

* Infiltration rate

* \Ventilation control strategy




Future work

Improve ventilation prediction for CO, controller

Model additional HVAC system designs for plant factories

Explore “floating” control options, e.g.:

Acceptable humidity range: 50 - 70%
Acceptable temperature range: 19-24 C

Before supplemental light is to be used, drive air humidity and temperature to lowest
acceptable values

Close greenhouse

Supplement CO, until temp/humidity exceed upper thresholds

Model semi-closed greenhouse systems

Small mechanical cooling system for shoulder months to minimize ventilation
requirements
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